The Development of a CO₂ Test Capability in the NASA JSC Arc Jet for **Mars Entry Simulation**

- Entry Simulation and Facility Overview
- Rationale for CO₂
- Safety Concerns and Mitigation
- Exhaust Gas Data
- Flowfield Analysis
- Conclusions
- Forward Work

Arc Jets are

The Best

Ground Simulation of Reentry Environments

BUT

Arc-jets

Do Not Replicate

Flight

Hypersonic Flow

Atmosphere

The surface of the model experiences a flight relevant environment in terms of:

- Heating rate
- Pressure
- Chemistry

However, there are differences in:

- Enthalpy
- Boundary layer thickness
- Shear
- Dissociation levels

Supersonic Flow

High Enthalpy Dissociated Gas

Aerodynamically Stabilized Arc Heater

Multi-pack dual diameter constricted arc column

- 1.5-in ID at the cathode, 2.36-in ID downstream

Individually water-cooled, electrically insulated constrictor segments

- 20 segments per modular pack
- 10 pack heater covers the Orbiter environmental envelope
- Arc column can be tailored to specific test conditions by adding or removing packs

Tungsten button cathode and conical copper anode

Test gas is injected tangentially to the inner column

- Forms a vortex that stabilizes the electric arc

Bulk enthalpy of the test gas is calculated

- Corrected for energy losses to coolant water

Argon is utilized as a "start" gas to initiate the arc After "arc on" the control system flows N₂ and O₂ and shuts off the argon

General Facility Description

Solid-state power supply with four current controlled DC rectifiers

- 10MW continuous rating, 13MW for 30 minutes

4 stage steam ejector vacuum system

- 200 microns Hg, ~192,000-ft altitude
- Steam is provided by an 80,000 lbm/hr boiler
- Up to 1.5 lbm/sec test gas capacity

Two test positions (TP-1 and TP-2)

Test gases (N_2 and O_2) and start gas (Argon)

- Individually controlled

High pressure coolant system

- 500-psi supplied by 700-hp pump
- De-ionized water
- Used for the heater, sting arms, and model holders

Low pressure cooling system

- Approx 30-psi
- Used for the test chamber, diffuser, heat exchangers, etc.

10 Hz data acquisition system

- Up to 200 channels

Control system by ABB

Highly reliable, used in industries worldwide

Capable of extended run times

- Multiple hours if necessary

Channel Nozzle (TP-1)

- Panels, TPS tile arrays
- Laminar or turbulent flow

Test	Surface Temp	Surface Press
<u>Section</u>	Range (°F)	Range (psf)
8x10	1500 - 3000	15 - 130
12x12	1000 - 2500	10 - 110
24x24	700 - 2200	5 - 60

Conical Nozzle (TP-2)

- 3.5, 5, 7.5, 10, 15, 20, 25, 30, 35, 40-in
- 15° half angle
- Nozzle size and Z-distance determines maximum models size

12-ft diameter test chamber layout allows video and optical temperature measurements of the test article surface

X-33 Wing Leading Edge

- Mars atmosphere can contain as much as 97% CO₂
 by volume
 - For low enthalpy conditions...

$$CO_2 \rightarrow CO + O - 2.9eV/molecule$$

- Results in more than 35% atomic oxygen by mass
- With increasing enthalpy...

- Results in ~70% atomic oxygen by mass
- Understanding the response of TPS in this environment is required for accurate modeling
 - Optimized TPS design maximizes payload

PICA Sensitivity to O₂ Variation (January 2008)

Summary of Dual Cal and Slug Calorimeter Test Conditions (8 inch Z Dist)						
Test Condition	Flow	Current	Bulk	Dual Cal	Pressure	Slug Heat
	Rate		Enthalpy	Heat Flux		Flux
	lbm/sec	amps	BTU/lbm	BTU/ft²-sec	(lbf/ft ²)	W/cm ²
100% N₂	0.60	480	2340	268	375	421
10% O₂	0.57	510	2549	256	386	427
23% O ₂ (AIR)	0.57	580	2692	258	384	424
30% O ₂	0.55	650	2960	257	385	404

- 4-in diameter blunt hemisphere PICA pucks
- Comparable stagnation heat flux and pressure
- Equivalent test durations
- O₂ percentage by mass

CO₂ System Setup

- 18 manifolded CO₂ K bottles used as the supply
- Heat exchanger with hot water from the low pressure boiler is used to prevent the formation of dry ice
- A throttle valve is used to manually control the flow rate based on the heater manifold pressure
 - The O₂ supply manifold on the heater is used as the CO₂ injection site
 - A correlation of manifold pressure to O₂
 flow rate is determined beforehand
 - Using a molar mass ratio, the CO₂ flow rate is calculated based on the manifold pressure
 - Corrections to the bulk enthalpy must be applied based on the calculated flow rate

Safety Concerns and Mitigation

Carbon Monoxide

- Standard temperature pressure environment
 - 12% LEL and 75% UEL by volume
- Mitigation via N₂ addition within vacuum system
 - 5:1 N₂:CO₂ is stoichiometrically impossible to explode even with 100% molar conversion of CO₂ to CO

$$CO_2$$
 + $5N_2$ + $|E| \rightarrow CO$ + ½O +5 N_2 (~>15% CO molar, 10% CO vol.)

 Residual gas analyzer (RGA) is used to sample the cooled exhaust gases to determine actual conversion rate

Cyanide

A cyanide ion can be produced by

$$CO_2 + N_2 + |E| \rightarrow CN^- + O_2 + \frac{1}{2}N_2$$

Further interaction of the cyanide ion with water can produce hydrogen cyanide by

$$CN^- + H_2O \rightarrow HCN + OH^-$$

- JSC Industrial Hygiene (IH) office analyzed chamber surface and water samples
 - To date, all samples reported as "non-detect" (< 1-μg/ft²)

Carbon Deposition

- Complete dissociation of the CO₂ could result in carbon soot deposits on the internal heater parts. Catastrophic failure could then occur due to electrical shorting.
- Mitigation via performing tests beginning at low CO₂ concentrations and short durations and inspecting the heater after each test run
- To date there has been no carbon deposition

Exhaust Gas Sample

Outer Diffuser Skin Metering Valve

MKS Instruments 999 Quattro™ Multi-Sensor Vacuum Transducer 5.0x10⁻¹⁰ Torr to Atmosphere With Atmospheric Switching

Pfieffer Vacuum
HiPace-80 Pumping
Station
Stanford Research
Systems RGA300

Vacuum is set to 10⁻⁶ torr prior to test and rises to ~10⁻⁵ torr during sampling exhaust gases

- Test run 2-3710-1 (January 2011)
 - 46% CO₂ by mass
 - 0.22-lb/sec total gas
 - ~55% molar conversion

	Cond 1	Cond 2
Current (amps)	500	1000
Power (MW)	1.32	2.33
Bulk Enthalpy (BTU/lb)	4170	6670
Stag Heat Rate* (BTU/ft²-sec)	148	352
Stag Pressure* (psf)	155	200

^{*4} inch diameter flat face

- Test run 2-3730-1 (March 2011)
 - $-90\% CO_2$ by mass
 - 0.40-lb/sec total gas
 - ~ 60% molar conversion

Current (amps)	750
Power (MW)	2.52
Bulk Enthalpy (BTU/lb)	4910
Stag Heat Rate* (BTU/ft²-sec)	185
Stag Pressure* (psf)	265

^{*4} inch diameter flat face

Flow Field Characterization using Laser Induced Fluorescence (LIF)

Laser frequency is tuned to interrogate O and N species independently

Fluorescence signal reveals three important flow properties

- Velocity from Doppler shift
- Temperature from lineshape width
- Species density from total signal intensity

Atomic Oxygen LIF Data, Test Run 2-3710-1 (January 2011)

- 46% CO₂: 54% N₂ by mass
- 0.220-lb/sec total gas

	Facility Data			Atomic Oxygen LIF Results		
Figure	Current (amps)	Power (MW)	Bulk Enthalpy (BTU/lb)	Temperature (deg F)	Velocity (m/s)	Density x10 ²¹ (m ³)
Α	500	1.32	4170	2600	4000	9.5
В	1000	2.33	6670	3420	4400	10.5

Atomic Oxygen LIF Data, (March 2011)

- 185-BTU/ft2-sec and 265-psf stagnation heat rate and pressure
- Measured with a 4 inch diameter flat face

		Facility Data				Atomic Oxygen LIF Data		
Figure	Total Gas Flow (lb/sec)	Current (amps)	Power (MW)	Bulk Enthalpy (BTU/lb)	Temperature (deg F)	Velocity (m/s)	Density x10 ²¹ (m ³)	
А	0.400	750	2.56	4910	3900	2510	2.9	
В	0.396	410	1.33	2530	2100	2575	5.7	

Conclusions

- The ARMSEF has successfully demonstrated the capability to perform tests safely:
 - with a 90% CO₂:10% N₂ by mass composition and
 - up to 2.56 MW power level
- Existing facility hardware is utilized
 - Electrode erosion rate is comparable to testing with air
- Developed an efficient process to allow rapid transition between the CO₂ and air configurations
- LIF data suggests that full dissociation of the CO molecule is not occurring
 - The atomic oxygen density for the 65% O₂ case is roughly double the density for the 90% CO₂ case
 - The CO within the heater is possibly acting as a shield gas prohibiting rapid oxidation of the electrodes
 - CO dissociation is extremely "hot" and the LIF profile should spectrally broaden to reflect a hotter atomic species with a greater separation of the peaks that indicates an increase in speed.

Forward Work

- Continue to expand the operational envelope with the CO₂ test gas
 - Immediate next goal is to demonstrate the ability to safely test with a 97% CO_2 : 3% N_2 composition
 - Increase power levels and flow rates
 - The design and specifications of a 0.6-lb/sec cryogenic CO₂ delivery system have been determined
 - Expected to be operational in FY12
- Continue to characterize of the flowfield
 - LIF data (centerline and off-axis)
 - Probe sweeps (stagnation heat rate and pressure)
 - Determine the levels of dissociation and generate a map across the operational envelope
- Investigate the differences between CO₂, air, and O₂ rich environments
 - Flowfield characterizations
 - Testing of known materials such as graphite, teflon, PICA, etc.